Framed holonomic knots
نویسندگان
چکیده
Abstract A holonomic knot is a knot in 3-space which arises as the 2-jet extension of a smooth function on the circle. A holonomic knot associated to a generic function is naturally framed by the blackboard framing of the knot diagram associated to the 1-jet extension of the function. There are two classical invariants of framed knot diagrams: the Whitney index (rotation number) W and the self linking number S .
منابع مشابه
Framed Knots in 3-manifolds
For a fixed isotopy type K of unframed knots in S there are infinitely many isotopy classes of framed knots that correspond to K when we forget the framing. We show that the same fact is true for all the isotopy types of unframed knots in a closed oriented 3-manifold M , provided that M 6= (S × S)#M . On the other hand for any M = (S × S)#M ′ we construct examples of isotopy classes of unframed...
متن کاملThe Universal Order One Invariant of Framed Knots in the Total Spaces of S-bundles over Orientable Surfaces
It is well-known that self-linking is the only Z-valued Vassiliev invariant of framed knots in S. However for most 3-manifolds, in particular for the total spaces of S-bundles over an orientable surface F 6= S, the space of Z-valued order one invariants is infinite dimensional. We give an explicit formula for the order one invariant I of framed knots in orientable total spaces of S-bundles over...
متن کاملTHE COLORED HOMFLY POLYNOMIAL IS q-HOLONOMIC
We prove that the colored HOMFLY polynomial of a link, colored by symmetric or exterior powers of the fundamental representation, is q-holonomic with respect to the color parameters. As a result, we obtain the existence of an (a, q) super-polynomial of all knots in 3-space. Our result has implications on the quantization of the SL(2,C) character variety of knots using ideal triangulations or th...
متن کاملThe Noncommutative A-Polynomial of (-2, 3, n) Pretzel Knots
We study q-holonomic sequences that arise as the colored Jones polynomial of knots in 3-space. The minimal-order recurrence for such a sequence is called the (non-commutative) A-polynomial of a knot. Using the method of guessing, we obtain this polynomial explicitly for the Kp = (−2, 3, 3+2p) pretzel knots for p = −5, . . . , 5. This is a particularly interesting family since the pairs (Kp,−K−p...
متن کاملEuclidean Geometric Invariant of Framed Knots in Manifolds
We present an invariant of a three–dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. An important feature of our work is that we are not using any nontrivial representation of the manifold fundamental group or knot group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002